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Abstract. This paper examines why a financial entity’s solvency capital 
estimation might be underestimated if the total amount required is obtained 
directly from a risk measurement. Using Monte Carlo simulation we show that, 
in some instances, a common risk measure such as Value-at-Risk is not 
subadditive when certain dependence structures are considered. Higher risk 
evaluations are obtained for independence between random variables than those 
obtained in the case of comonotonicity. The paper stresses, therefore, the 
relationship between dependence structures and capital estimation. 
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1   Introduction 
 
Recent years have seen the developement of regulatory frameworks designed to 
guarantee the financial stability of banking and insurance entities around the world. 
Europe developed Basel II and, more recently, Basel III for its banking market, and 
parallel to these accords drew up the Solvency II directive in 2010 for its insurance 
market and the Swiss Solvency Test in Switzerland. The regulatory frameworks seek to 
stablish what might be considered a reasonably amount of capital (referred to as 
Solvency Capital in Basel II and III and as Solvency Capital Requirement in Solvency II 
and the Swiss Solvency Test) to put aside to ensure financial stability in the case of 
adverse fluctuations on losses. This quantity must reflect the entity’s specific risk 
profile and, under the aforementioned frameworks, it can be arrived at by applying 
either the Standard Model proposed by the regulator or an Internal Model proposed by 
the entity itself. In the later case, a number of requirements must first be satisfied before 
the model can be used for the purposes of capital estimation. In the European 
frameworks is regulated by the calibration of a risk measurement given a confidence 
level over a given time horizon. 
In this paper we focus our attention on the European insurance market, and more 
specifically in non-life underwriting risk, in relation to the Solvency II and Swiss 
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Solvency Test regulations. Under both frameworks, the total capital estimation is 
obtained by aggregating individual capitals requirements arising from a company’s 
various sources of risk, based on the correlation between them as defined by the 
Standard Model. As a means of aggregating risks, we proposed a simulation of a 
multivariate random variable where each marginal distribution function represents the 
claims of a given line of business. We simulate a sample of this multivariate random 
variable taking into account the correlation between lines of business and, then, we 
aggregate the results of each simulated claim by line of business in order to obtain the 
distribution of the total claims. Finally, we estimate the capital requirements by 
applying a risk measure over the total claims distribution. 
By representing an example of a multivariate random variable simulation we show that 
under certain assumptions there are risk measures that fail to satisfy the subadditive 
property. This is tipically the case where there is a very heavy tailed or skewed 
distribution on the margin and/or in which a special dependence structure is assumed 
for its joint distribution. Such circumstances can lead to an underestimation of the 
solvency capital if we incorrectly assimilate a risk measurement to the capital 
requirements, i.e., the appropiate distribution is not fitted to the marginals or the joint 
behavior of the marginal distributions is unknown. 
The paper also emphasizes typical misunderstanding in the meaning of risk measures 
and the relationship between these risk measures and the underlying dependence 
structures of the variables, which represents the sources of risk. 
 
2   Misunderstanding in the meaning of Value-at-Risk measure 
 
Risk measures are tipically employed to determine the amount of capital that should be 
aside to cover unexpected losses. Artzner et al. (1999) proposed a number of desirable 
properties that a risk measure should satisfy in order to be considered a coherent risk 
measure. One such property, that of subadditivity, captures the idea of diversification 
across random variables since in the words of Artzner et al. (1999): "...the merger [of 
two risks] does not create extra risk". Suppose we have � random variables, �� , � =1, … , �  and its sum, � = ∑  ���� �� ; then we say that risk measure �  has the 
subadditivity property if and only if for all �� 
 �(�) ≤ ∑ 	���� �(��)	 .	 	 	 (1) 

 
Although several risk measures are available, here we focus on two that are on loss 
distribution, namely Value-at-Risk and Tail Value-at-Risk. These risk measures seek to 
describe how risky a portfolio is. Of the two, the most frequently adopted is the 
Value-at-Risk measure given that it is employed under Basel III and Solvency II as a 
tool for calibrating the solvency capital requirements. Value-at-Risk and its properties 
has been widely discussed (see Jorion, 2007). The Value-at-Risk measure is simply a 
quantile of a distribution function. However, it is not a coherent risk measure since it 
does not satisfy condition (1) for all ��, although it does in the case in which �� are 
normally distributed and, more generally, in the case in which elliptical distributions 
are considered for �� as is shown in Fang et al. (1990) and Embrechts et al. (2002). 
Formally, given a confidence level � ∈ [0,1], Value-at-Risk is defined as the infimum 
value of the distribution of a random variable � such that the probability that a value � 



exceeds a certain threshold � is no greater than 1 − �. Usually this probability is 
taken to be 0.05 or less. 
 ��� (�) = 	��!�"#"	{�/&(� > �) = 1 − �} = )*←(�) ,  (2) 
 
where )*(�) denotes the distribution function of � and )*←(�) denotes the inverse 
distribution function of )*(�). 
It is common to choose 1 − � based on a very large period. For example, under the 
Solvency II directive, this choice is made on the basis of an occurrence of an event 
every two hundred years, i.e., a probability of 0.5%. For this reason, this risk measure is 
known as a frequency measure. It describes the distribution up to the � -th percentile, 
but it provides no information as to how the distribution behaves at higher percentiles. 
Unlike the Value-at-Risk measure, the Tail Value-at-Risk describes the behavior of the 
tail of the distribution. This risk measure is defined, therefore, as the expected value of 
all percentiles higher than the Value-at-Risk. Formally, 
 ,��� (�) = -[�|� ≥ ��� (�)] ,   (3) 
 
where -[⋅ | ⋅] denotes the conditional expectation operator. 
Thus, while two different distributions might have the same Value-at-Risk for a given a 
confidence level, their Tail Value-at-Risk may differ due to a different heaviness of the 
tail of the distribution. The fact of having to consider not just the choice of 1 − � but 
also the values of the distribution higher than the �-th percentile means the Tail 
Value-at-Risk is known as a severity risk measure. Likewise, the Tail Value-at-Risk 
measure is a subadditive and coherent since it satisfies property (1), as is shown in 
Embrechts et al (2005). 
Despite the mathematical principles underpinning the Value-at-Risk and Tail 
Value-at-Risk measures, a misunderstanding arises when seeking to apply them 
(specially, in the case of the former) to capital requirements. It is common to interpret 
Value-at-Risk as the value that will not be exceeded with a probability �. If, as is usual, 
the random variable is considerd as the loss of a portfolio, this definition is equivalent 
to the loss that will not be exceeded with a probability of �, or the maximum loss given � as pointed out by Jorion (2007). Yet, this interpretation is not stictly correct since 
maximum loss is not generally given by Value-at-Risk for a given confidence level as 
we shall see bellow. 
Inequality (1) shows an upper bound for �(�)  which is ∑  ���� �(��) . A typical 
misunderstanding arises from this bound given that only in cases of diversifiable risks 
can such a bound ocurr. In instances of non-diversifiable risks this bound fails. As 
Embrechts et al. (2003) showed, if we consider Value-at-Risk as a risk measure and a 
sequence of comonotonic random variables �� , � = 1, … , �  then ���(�) =���(∑  ���� ��) = ∑  ���� ���(��), which is known as the comonotonic bound. But this 
is not the worst possible case since comonotonicity does not necessarily result in the 
worst loss a company might suffer. Dependence structures between random variables ��  might be found so that the Value-at-Risk of the sum of them exceeds the 
comonotonic bound. Translating this to the definition of Value-at-Risk we can conclude 
that it is possible to have greater losses than those arising from the comonotonic case 
given �. Then ∑  ���� ���(��) is not the maximum loss we could have given �. 



Generally, Value-at-Risk fails to be a sub-additive risk measure in those cases where we 
have very heavy-tailed random variables, which is the case of those variables 
representing catastrophic or operational risks. It also fails in the case of skewed random 
variables and in some instances in which special dependence structures are imposed on 
the joint behavior of margins. Embrechts et al. (2005) showed that when Pareto random 
variables are considered, Value-at-Risk fails to be subadditive. Moreover, when the 
infinite mean case is considered, i.e., a tail-parameter of Pareto distribution is equal to 
one for all random variables considered, Value-at-Risk fails to be sub-additive at all 
confidence levels, otherwise, there's a confidence level up to which Value-at-Risk is 
sub-additive and beyond which it is not. 
In short, the estimation of capital requirements using a risk measure should be 
approached with caution since the resulting valuation might underestimate the capital 
needs depending on the joint distribution of the random variables representing the 
implicit risks within a company as well as on its individual statistical distributions. 
Therefore, risk measurements derived from non coherent risk measures could lead the 
company to financial and solvency instability. 
 
3   A non-subadditivity example of the Value-at-Risk risk measure 
 
In this section we present an example in which we demonstrate that while the 
Value-at-Risk measure fails to be subadditive, the Tail Value-at-Risk measure satisfies 
the property of subadditivity. We use a historical non-life insurance market data set for 
Spain corresponding to the period 2000 to 2010. The data were obtained from public 
information published at the website of the Dirección General de Seguros (DGS)2. The 
data represents the yearly annual aggregate claims and three lines of business are 
considered (see Table 1 for their descriptive statistics3). A complete description of the 
risks included in each line of business can be found in the QIS-5 Technical 
Specifications, CEIOPS (2010). 
We assume that each line of business behaves statistically as a generalized Pareto 
random variable. The parameters resulting from fitting the data to the Pareto 
distribution are shown in Table 2. 

 
Table 1. Descriptive statistics	∗ of the yearly annual aggregate	∗∗ claims by 

line of business 
 

    Min.  1st Qu.  Median  Mean  Sd 3rd Qu.  Max. 
Motor, third 
party liability 

4.286 4.904 5.182 5.085 0.332 5.318 5.439 

Fire and 
other 
property 
damage 

2.337 3.006 3.740 3.539 0.723 4.067 4.544 

Third party 
liability 

0.552 0.684 0.819 0.842 0.195 1.011 1.084 

Source: Own source from DGS / 	∗thousand millions euros / 	∗∗ deflated 
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After fitting the data of each line of business to its corresponding distribution, we 
performed a multivariate Monte Carlo simulation and we compute the Value-at-Risk 
and the Tail Value-at-Risk for several confidence levels. For the joint behavior of risks 
we imposed several copulas, which in fact entails considering several different 
dependence structures. An introduction to multivariate models and dependence 
concepts and their properties can be found in Nelsen (2006) and Joe (1997). 
 

Table 2. Generalized Pareto shape and scale	∗ parameters 
 

    Shape  Scale 
Motor, third party 
liability 

0.93 0.30 

Fire and other 
property damage 

0.95 0.23 

Third party liability 0.75 0.19 	∗thousand millions euros 
 

First, we established two extreme cases of dependence: comonotonicity and 
independence. We used the upper Fréchet copula, which reflects the case of 
comonotonicity between margins, and then we used the independence copula, which 
reflects the case of independence between margins. Finally, we employed two further 
copulas, the Clayton copula, a very right- skewed distribution, and the Frank copula, a 
symmetric but very heavy tailed distribution, with two dependence parameters (2) each 
one. 
Table 3 shows the results of Value-at-Risk and Tail Value-at-Risk for several 
confidence levels. Under the comonotonic assumption, which leads to the comonotonic 
bound, Value-at-Risk underestimates the risk (i.e., fails to be subadditive) compared to 
the independence, the Clayton and Frank copula cases at all condidence level up to 
some point between 0.90 and 0.99, and beyond which it Value-at-Risk satisty the 
subadditivity property. The values in bold indicate where the subadditivity property 
fails to be satisfied compared with the case of comonotonicity. 

 

Table 3. VaR and TVaR	∗ from a simulation	∗∗ of a tridimensional 
multivariate distribution for several dependence structures and Pareto margins 

 
Value at Risk 

c.l. independence 
copula 

Clayton copula Frank copula comonotonic 
copula 

  3 = 4 3 = 5 3 = 4 3 = 5  
0.8 3.41 3.53 3.57 3.45 3.48 2.67 
0.9 6.36 6.78 6.99 6.59 6.85 5.78 
0.99 47.69 49.6 50.7 50.02 50.17 53.33 
0.999 398.05 396.45 421.82 371.26 401.18 435.69 

Tail Value at Risk 
c.l. independence 

copula 
Clayton copula Frank copula comonotonic 

copula 
  2 = 1 2 = 2 2 = 1 2 = 2  

0.8 23.14 25.09 26.76 24.78 31.5 32.66 
0.9 41.7 45.34 48.57 44.84 58.35 61.49 
0.99 289.28 318.72 347.22 315.22 446.51 488.76 
0.999 1868.51 2151.37 2419.51 2163.13 3409.88 3777.41 



Source: Own source / 	∗thousand millions euros / c.l.: confidence level / 	∗∗100.000 simulations 
Since, Tail Value-at-Risk is a subadditive measure of risk, all values under 
independence case, as well as those for the Clayton and Frank copula assumptions are, 
as expected, lower than those in the comonotonic case at all confidence level. In the 
Tail Value-at-Risk case, the more dependence assumption implies higher values of risk 
measurements at all confidence levels. 
 
4   Implications for Risk Management 
 
New regulatory frameworks in Europe establish the capital requirements that financial 
companies need to maintain in order to ensure acceptable levels of solvency. These 
requirements are calibrated by applying a risk measure based on the distribution of a 
random variable that represents the total losses a company would suffer. 
Typically, in the field of risk management, managers are aware of the individual risks 
for which they have responsibility, but are unaware of the relationship between the 
sources of risk that they manage and those arising from other departments or other areas 
within the same company. This means that the joint behavior of the random variables 
representing the different sources of risk remains unknown. As such, the process of 
aggregating risk measurements to obtain an global capital requirement is complex and 
difficult to address. 
As consequence of this, it's usual for risk managers to obtain the risks measurements of 
each variable that represent a single source of risk considered and after that add them up 
to obtain a single amount and assimilate it to the regulatory capital. 
In so doing, if companies choose a non coherent risk measure (as defined by Artzner et 
al., 1999) such as Value-at-Risk, (thereby adhering to Solvency II or Basel III criteria), 
they may overlook a number of crucial points. First, they may overlook the tail 
behavior of each random variable considerd individually, which means, they fail to 
incorporate the possibility of severe losses that could greatly undermine the company's 
solvency. Second, by summing up risk measurements, such as those resulting from the 
Value-at-Risk, a company implicitly assumes, perhaps inadvertenly, that its random 
variables are comonotonic, which is in conflict with the idea of their ignoring the joint 
behavior of variables. Even in those instance in which risk managers believe that the 
joint behavior is comonotonic, it is possible to suffer worse losses than those that are 
consequence of summing the Value at Risk measurements derived from comonotonic 
random variables, as shown in the example in the previous section (see Table 3). In this 
example, even when the random variables are independent, the Value at Risk of the sum 
of random variables is greater than it is in the case of comonotonicity at certain 
confidence levels. 
This finding highlights not only the importance of choosing of a coherent risk measure, 
but also the need, first, to select the right fit and distribution function so as to reflect 
correctly the joint behavior of sources of risk and their dependence structures; and, 
second, to select the right fit and distribution functions so as to reflect the margin 
behavior of each random variable representing a single sources of risk. 
In example presented in Table 3, we used Pareto distributions for margins. When 
considering this distribution, it is possible to find cases in which we might have infinite 
expected values or variance, which are extreme cases that cause non-subadditivity for 
the Value-at-Risk measure, but they are not the only cases in which this might occur. 



There are many risks, generally catastrophic risks, for which the Pareto distribution fits 
well, and for which the non-subadditivity property could fail when using non-coherent 
risk measures. Examples of the Pareto distribution being fitted to operational and 
catastrophic risks can be found in Guillén et al. (2011) and Sarabia et al. (2009), 
respectively. 
A number of lessons can be drawn by those involved in risk management from the 
preceding analysis. First, knowledge of the joint statistic behavior of risks is essential 
when considering a company’s overall level of risk. This does not simply mean the 
need to estimate the correlation coefficients but also to consider underlying dependence 
structures. Second, although using a coherent risk measure such as the Tail 
Value-at-Risk leads to higher capital estimations than in the case when using the 
Value-at-Risk measure, it serves to ensure that capital requirements are not 
underestimated due to the property of subadditivity should the hypothesis regarding the 
joint behavior of sources of risk prove to be incorrect. However, errors in the model 
estimation could well lead to the real capital needs being underestimated, even though a 
coherent risk measure such as Tail Value-at-Risk has been used. Third, comonotonicity 
does not represent the worst possible scenario when estimating capital requirements 
using loss and risk measurements. This might appear counterintuitive, but managers of 
risks need to bear in mind that risks may well be superadditive as opposed to 
subadditive, and as such, no diversification effect occurs when several random 
variables are merged. Fourth, while it may appear obvious, differences in capital 
estimation derived from the application of different risk measures do not mean the 
portfolio has varying degrees of risk; rather what we see is simply different ways of 
measuring what might happen beyond a given threshold, i.e. the losses that would 
exceed the threshold in the case of the Value-at-Risk measure, and the severity of these 
losses beyond the threshold in the case of Tail Value-at-Risk measure. 
 
Appendix 
 
A multivariate simulation of the random variable was conducted using the R-Project 
software, version 2.13.1 and the copula package implemented therein. Bellow we 
describe the simulation performance. 
A random variable � has a Generalized Pareto distribution (GPD) if its distribution 
function is 

7*,8,9(�) =
:;<
;=1 − >1 + @ ⋅ �A B

C�8 ; �!	@ ≠ 0
1 − F�G >−�A B ; �!	@ = 0

 

 
where @  the shape parameter and A > 0 the scale parameter. The expexted value -[�] is 

-[�] = A1 − @ 

and the standard deviation is the scale parameter A. 
The shape parameter can be estimated using maximum likelihood estimation or the 
method of moments. Using the moments estimation procedure, the shape parameter 



results in -[�] = 9
�C8 ⇒ @ = C9

I[*] + 1 = −JK��[�] + 1 ; being JK��[�]  the 

coefficient of variation of �. 
Having estimated the sample expected value and the standard deviation for each line of 
business considered we obtain the coefficient of variation and construct a 2x3 matrix 
which containing the coefficients of variation and standard deviation in each of the 
rows. The columns represent each one of the three line of business. 

 
data<-read.table('CoV.csv', header=TRUE, sep=";") 
data<-as.matrix(data) 

 
The estimation of the shape and scale parameters becomes 
shape1<- -data[1,1]+1  # the shape parameter for the first margin. 
shape2<- -data[1,2]+1  # the shape parameter for the second margin. 
shape3<- -data[1,3]+1  # the shape parameter for the third margin. 
scale1<-data[2,1]  # the scale parameter for the first margin. 
scale2<-data[2,2]  # the scale parameter for the second margin. 
scale3<-data[2,3]  # the scale parameter for the third margin. 
 
The comonotonic bound are derived from the sum of the � − Lℎ quantiles of each 
marginal distribution. We compute the quantiles for each margin after simulating one 
thousand observations of the GPD for each margin given its corresponding parameters. 
 
n=100000  # number of simulations. 
l<-c(0.80,0.90,0.99,0.999)  # vector of given confidence level.  
 
The simulation for the first, second and third margin are 
 
pareto1<-rGPD(n,shape1, beta=scale1)  # for the first margin. 
pareto2<-rGPD(n,shape2, beta=scale2)  # for the second margin. 
pareto3<-rGPD(n,shape3, beta=scale3)  # for the third margin. 
 
VaR1<-quantile(pareto1,l)  # Value-at-Risk for the first margin. 
VaR2<-quantile(pareto2,l)  # Value-at-Risk for the second margin. 
VaR3<-quantile(pareto3,l)  # Value-at-Risk for the third margin. 
VaR_com<-(VaR1+VaR2+VaR3) # comonotonic bound vector. 
 
When considering independence between the random variables, we obtain the Value- 
at-Risk and the Tail Value-at-Risk by simulating the three-dimensional Gaussian 
copula with Pareto margins given shape and scale parameters and dependence 
parameters (linear correlations) for the copula equal to zero. 
 
corr<-c(0,0,0)  # vector of linear correlations for the Gaussian copula. 
copulagaussiana<-mvdc(normalCopula(corr,dim=3, 
dispstr="un"),c(rep("GPD",3)),list(param1,param2, 
param3)) 



gaussian.sample<-rmvdc(copulagaussiana,1000000)   
# simulation of the copula. 
gauss.sample.aggrega<-rowSums(gaussian.sample) # distribution of 
total losses. 
VaR_ind<-quantile(gauss.sample.aggrega,l)  
TVaR_ind<-rep(0,4) 
for(i in 1:4){ 
ES<-mean(gauss.sample.aggrega[gauss.sample. 
aggrega>VaR_ind[i]]) 
TVaR_ind[i]<-ES} 
 
VaR_ind  # Value-at-Risk vector under independence assumption. 
TVaR_ind  # Tail Value-at-Risk vector under independence assumption. 

 
The Tail Value-at-Risk under the comonotonicity assumption between random 
variables is obtained by simply setting a new correlation vector for the Gaussian 
copula, i.e, corr<-c (0.9999,0.9999,0.9999)  as the comonotonic copula can 
be obtained when the dependence parameters of the Gaussian copula tend to one.  
The Value-at-Risk and Tail Value-at-Risk for the Clayton and Frank copulas are 
obtained in a similar way but changing the kind of copula used and the corresponding 
dependence parameter. We show the Clayton copula case for a dependence parameter 2 = 1. 
 
theta=1  # dependence parameter for the Clayton copula.  
Copulaclayton<-mvdc(claytonCopula(theta,dim=3), 
c(rep("GPD",3)),list(param1,param2,param3)) 
clayton.sample<-rmvdc(copulaclayton,1000000) 
clayton.sample.aggrega<-rowSums(clayton.sample) 
VaR_cl<-quantile(clayton.sample.aggrega,l)  
TVaR_cl<-rep(0,4) 
for(i in 1:4){ 
ES<-mean(clayton.sample.aggrega[clayton.sample. 
aggrega>VaR_cl[i]]) 
TVaR_cl[i]<-ES} 

 
VaR_cl  # Value-at-Risk vector under Clayton copula assumption.   
TVaR_cl  #Tail Value-at-Risk vector under Clayton copula assumption.  
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