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Abstract. This paper examines why a financial entity’s sobie capital
estimation might be underestimated if the total amarequired is obtained
directly from a risk measurement. Using Monte Caifoulation we show that,
in some instances, a common risk measure such &se-¥aRisk is not
subadditive when certain dependence structurescamsidered. Higher risk
evaluations are obtained for independence betwa®iom variables than those
obtained in the case of comonotonicity. The pagessses, therefore, the
relationship between dependence structures anthtapiimation.
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1 Introduction

Recent years have seen the developement of regultameworks designed to
guarantee the financial stability of banking angumance entities around the world.
Europe developed Basel Il and, more recently, BHkébr its banking market, and
parallel to these accords drew up the Solvencyirdctive in 2010 for its insurance
market and the Swiss Solvency Test in Switzerlahe. regulatory frameworks seek to
stablish what might be considered a reasonably atnoficapital (referred to as
Solvency Capital in Basel Il and 11l and aSolvency Capital Requirement in Solvency
and the Swiss Solvency Test) to put aside to enfsnmeacial stability in the case of
adverse fluctuations on losses. This quantity neBect the entity’s specific risk
profile and, under the aforementioned frameworkgan be arrived at by applying
either thetandard Model proposed by the regulator or banternal Model proposed by
the entity itself. In the later case, a numbelegjuirements must first be satisfied before
the model can be used for the purposes of capgtimation. In the European
frameworks is regulated by the calibration of & mseasurement given a confidence
level over a given time horizon.

In this paper we focus our attention on the Europeaurance market, and more
specifically in non-life underwriting risk, in relan to the Solvency Il and Swiss
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Solvency Test regulations. Under both frameworke, total capital estimation is
obtained by aggregating individual capitals requieats arising from a company’s
various sources of risk, based on the correlatietwben them as defined by the
Sandard Model. As a means of aggregating risks, we proposednalaiion of a
multivariate random variable where each marginstridution function represents the
claims of a given line of business. We simulatame of this multivariate random
variable taking into account the correlation betwéines of business and, then, we
aggregate the results of each simulated claimrgydf business in order to obtain the
distribution of the total claims. Finally, we estte the capital requirements by
applying a risk measure over the tatidims distribution.

By representing an example of a multivariate randanmble simulation we show that
under certain assumptions there are risk meashegddil to satisfy the subadditive
property. This is tipically the case where thereaizvery heavy tailed or skewed
distribution on the margin and/or in which a spkdiependence structure is assumed
for its joint distribution. Such circumstances dead to an underestimation of the
solvency capital if we incorrectly assimilate akrimmeasurement to the capital
requirements, i.e., thappropiate distribution is not fitted to the maadmor the joint
behavior of the marginal distributions is unknown.

The paper also emphasizes typical misunderstanditite meaning of risk measures
and the relationship between these risk measurdstla underlying dependence
structures of the variables, which represents thieces of risk.

2 Misunderstanding in the meaning of Value-at-Risk measure

Risk measures are tipically employed to determntiesasimount of capital that should be
aside to cover unexpected losses. Artatet. (1999) proposed a number of desirable
properties that a risk measure should satisfy deoto be consideredaaherent risk
measure. One such property, thasafadditivity, captures the idea of diversification
across random variables since in the words of A&rtenal. (1999):"...the merger [ of
two risks] does not create extra risk'. Suppose we have random variables;,i =
1,..,n and its sum,S=Y", X;; then we say that risk measuge has the
subadditivity property if and only if for allx;

p(S) < Xiy p(X) 1)

Although several risk measures are available, herdocus on two that are on loss
distribution, namelyWwalue-at-Risk andTail Value-at-Risk. These risk measures seek to
describe how risky a portfolio is. Of the two, theost frequently adopted ihe
Value-at-Risk measure given that it is employed under Basedrid Solvency Il as a
tool for calibrating the solvency capital requirerteValue-at-Risk and its properties
has been widely discussed (see Jorion, 2007).Vehee-at-Risk measure is simply a
guantile of a distribution function. However, itrist acoherent risk measure since it
does not satisfy condition (1) for aYj;, although it does in the case in whigh are
normally distributed and, more generally, in theec#n which elliptical distributions
are considered fok; as is shown in Fang al. (1990) and Embrechtt al. (2002).
Formally,given a confidence levet € [0,1], Value-at-Risk is defined as the infimum
value of the distribution of a random variatfesuch that the probability that a value



exceeds a certain threshatdis no greater than — a. Usually this probability is
taken to be 0.05 or less.

VaR*(X) = infimum {x/P(X > x) =1 —a} = Fy (a) , (2)

where Fy(x) denotes the distribution function &f and Fx (a) denotes the inverse
distribution function ofFy (x).

It is common to choosé — a based on a very large period. For example, urder t
Solvency Il directive, this choice is made on tleesib of an occurrence of an event
every two hundred years, i.e., a probability oP@.%-or this reason, this risk measure is
known as a frequency measure. It describes theldison up to thea -th percentile,
but it provides no information as to how the dmsttion behaves at higher percentiles.
Unlike theValue-at-Risk measure, th&ail Value-at-Risk describes the behavior of the
tail of the distribution. This risk measure is daefil, therefore, as the expected value of
all percentiles higher than tMalue-at-Risk. Formally,

TVaR%(X) = E[X|x = VaR*(X)] , ©)

where E[- | -] denotes the conditional expectation operator.

Thus, while two different distributions might hate samé/alue-at-Risk for a given a
confidence level, theifail Value-at-Risk may differ due to a different heaviness of the
tail of the distribution. The fact of having to cider not just the choice df — a but
also the values of the distribution higher than théh percentile means theail
Value-at-Risk is known as a severity risk measure. Likewise, Thi¢ Value-at-Risk
measure is a subadditive aooherent since it satisfies property (1), as is shown in
Embrechtset al (2005).

Despite the mathematical principles underpinning Walue-at-Risk and Tail
Value-at-Risk measures, a misunderstanding arises when see&irgpply them
(specially, in the case of the former) to capi&uirements. It is common to interpret
Value-at-Risk as the value that will not be exceeded with a gbdltiy «. If, as is usual,
the random variable is considerd as the loss afrdqbio, this definition is equivalent
to the loss that will not be exceeded with a prdbglof «, or the maximum loss given
a as pointed out by Jorion (2007). Yet, this intetption is not stictly correct since
maximum loss is not generally given Wglue-at-Risk for a given confidence level as
we shall see bellow.

Inequality (1) shows an upper bound fp¢S) which is X7\, p(X;). A typical
misunderstanding arises from this bound given ohét in cases of diversifiable risks
can such a bound ocurr. In instances of non-difieide risks this bound fails. As
Embrechtset al. (2003) showed, if we consid¥alue-at-Risk as a risk measure and a
sequence of comonotonic random variablgsi=1,..,n then VaR(S) =
VaR(X, X)) = X1, VaR(X;), which is known as the comonotonic bound. But this
is not the worst possible case since comonotonéigs not necessarily result in the
worst loss a company might suffer. Dependence tsireis between random variables
X; might be found so that th¥alue-at-Risk of the sum of them exceeds the
comonotonic bound. Translating this to the defimtofValue-at-Risk we can conclude
that it is possible to have greater losses thasetlamising from the comonotonic case
given a. ThenY -, VaR(X;) is not the maximum loss we could have given



Generally Value-at-Risk fails to be a sub-additive risk measure in th@sses where we
have very heavy-tailed random variables, which He tase of those variables
representing catastrophic or operational riskalsi fails in the case of skewed random
variables and in some instances in which speciadéence structures are imposed on
the joint behavior of margins. Embrechtsl. (2005) showed that when Pareto random
variables are consideredalue-at-Risk fails to be subadditive. Moreover, when the
infinite mean case is considered, i.etai&parameter of Pareto distribution is equal to
one for all random variables consider®&djue-at-Risk fails to be sub-additive at all
confidence levels, otherwise, there's a confiddeeel up to whichvValue-at-Risk is
sub-additive and beyond which it is not.

In short, the estimation of capital requirementingisa risk measure should be
approached with caution since the resulting vaduathight underestimate the capital
needs depending on the joint distribution of thedam variables representing the
implicit risks within a company as well as on itglividual statistical distributions.
Therefore, risk measurements derived from carerent risk measures could lead the
company to financial and solvency instability.

3 A non-subadditivity example of the Value-at-Risk risk measure

In this section we present an example in which weenahstrate that while the
Value-at-Risk measure fails to be subadditive, Fal Value-at-Risk measure satisfies
the property ofubadditivity. We use a historical non-life insurance markea det for
Spain corresponding to the period 2000 to 2010. ddta were obtained from public
information published at the website of the DiréccGeneral de Seguros (DGSJhe
data represents the yearly annual aggregate claimdsthree lines of business are
considered (see Table 1 for their descriptive stiaff). A complete description of the
risks included in each line of business can be doum the QIS-5 Technical
Specifications, CEIOPS (2010).

We assume that each line of business behavestistdljsas a generalized Pareto
random variable. The parameters resulting fromn@ttthe data to the Pareto
distribution areshown in Table 2.

Table 1. Descriptive statistics of the yearly annual aggregéteclaims by
line of business

Min. 1st Qu. Median Mean Sd 3rd Qu. Max.
Motor, third
party habiity 4286 4.904 5.182 5.085 0.332 5.318 5.439
Fire and
other 2.337 3.006 3.740 3.539 0.723 4.067 4.544
property : ! ! ! ) : :
damage
Third party ~ 0.552 0.684 0.819 0.842 0.195 1.011 1.084
liability

Source: Own source from DGS*thousand millions euros 7* deflated

www.dgsfp.meh.es
3Minimum (Min.), Quartile (Qu.), Standard deviati¢®d), Maximum (Max.)



After fitting the data of each line of businessit® corresponding distribution, we
performed a multivariate Monte Carlo simulation amel compute th&alue-at-Risk
and theTail Value-at-Risk for several confidence levels. For the joint bétiagf risks
we imposed several copulas, which in fact entadssaering several different
dependence structures. An introduction to multateri models and dependence
concepts and their properties can be found in Kg[28@06) and Joe (1997).

Table 2. Generalized Pareto shape and stglarameters

Shape Scale
Motor, third party 0.93 0.30
liability ’ ’
Fire and other 0.95 0.23
property damage
Third party liability 0.75 0.19

*thousand millions euros

First, we established two extreme cases of depe&edenomonotonicity and
independence. We used the upper Fréchet copulachwteflects the case of
comonotonicity between margins, and then we usedrittependence copula, which
reflects the case of independence between maiffgimslly, we employed two further
copulas, the Clayton copula, a very right- skewisttibution, and the Frank copula, a
symmetric but very heavy tailed distribution, witto dependence paramete$ éach
one.

Table 3 shows the results &alue-at-Risk and Tail Value-at-Risk for several
confidence levels. Under the comonotonic assumptitiich leads to the comonotonic
bound,Value-at-Risk underestimates the risk (i.e., fails to be subtadgjicompared to
the independence, the Clayton and Frank copulascasell condidence level up to
some point between 0.90 and 0.99, and beyond wihitalue-at-Risk satisty the
subadditivity property. The values in bold indicate where shbadditivity property
fails to be satisfied compared with the case of@aotonicity.

Table 3. VaR and TVaR from a simulatiori* of a tridimensional
multivariate distribution for several dependencactres and Pareto margins

Value at Risk
cl. independence Clayton copula Frank copula comonotonic
copula copula
0=1 0=2 0=1 0=2
0.8 341 353 3.57 345 348 2.67
0.9 6.36 6.78 6.99 6.59 6.85 5.78
0.99 47.69 49.6 50.7 50.02 50.17 53.33
0.999 398.05 396.45 421.82 371.26 401.18 435.69
Tail Value at Risk
cl. independence Clayton copula Frank copula comonotonic
copula copula
6=1 6=2 6=1 6=2
0.8 23.14 25.09 26.76 24.78 315 32.66
0.9 417 45.34 48.57 44.84 58.35 61.49
0.99 289.28 318.72 347.22 315.22 446.51 488.76
0.999 1868.51 2151.37 2419.51 2163.13 3409.88 3T77.




Source: Own source 7thousand millions euros / c.l.: confidence level 100.000 simulations
Since, Tail Value-at-Risk is a subadditive measure of risk, all values under
independence case, as well as those for the Claytdri-rank copula assumptions are,
as expected, lower than those in the comonotorse aa all confidence level. In the
Tail Value-at-Risk case, the more dependence assumption impliesrhighees of risk
measurements at all confidence levels.

4 Implicationsfor Risk Management

New regulatory frameworks in Europe establish #@yeital requirements that financial
companies need to maintain in order to ensure &alleplevels of solvency. These
requirements are calibrated by applying a risk meabased on the distribution of a
random variable that represents the total lossesrgany would suffer.

Typically, in the field of risk management, managare aware of the individual risks
for which they have responsibility, but are unawafehe relationship between the
sources of risk that they manage and those arfisingother departments or other areas
within the same company. This means that the joétaviorof the random variables
representing the different sources of risk remainknown. As such, the process of
aggregating risk measurements to obtain an gldadgtal requirement is complex and
difficult to address.

As consequence of this, it's usual for risk marmagepbtain the risks measurements of
each variable that represent a single sourcelo€dssidered and after that add them up
to obtain a single amount and assimilate it torégrilatory capital.

In so doing, if companies choose a moherent risk measure (as defined by Artzmeer
al., 1999) such a¥alue-at-Risk, (thereby adhering to Solvency Il or Basel lliteria),
they may overlook a number of crucial points. Fitstey may overlook the tail
behavior of each random variable considerd indiailyu which means, they fail to
incorporate the possibility of severe losses thata greatly undermine the company's
solvency. Second, by summing up risk measuremesut$, as those resulting from the
Value-at-Risk, a company implicitly assumes, perhaps inadveriahht its random
variables are comonotonic, which is in conflictiwihe idea of their ignoring the joint
behavior of variables. Even in those instance iiclwvhisk managers believe that the
joint behavior is comonotonic, it is possible tdfsuworse losses than those that are
consequence of summing thalue at Risk measurements derived from comonotonic
random variables, as shown in the example in theipus section (see Table 3). In this
example, even when the random variables are indieperthevalue at Risk of the sum

of random variables is greater than it is in theecaf comonotonicity at certain
confidence levels.

This finding highlights not only the importanceafoosing of @oherent risk measure,
but also the need, first, to select the right fid aistribution function so as to reflect
correctly the joint behavior of sources of risk ahdir dependence structures; and,
second, to select the right fit and distributiomdtions so as to reflect the margin
behavior of each random variable representingglesisources of risk.

In example presented in Table 3, we used Paretohbditons for margins. When
considering this distribution, it is possible todicases in which we might have infinite
expected values or variance, which are extremesdhse¢ cause nosubadditivity for

the Value-at-Risk measure, but they are not the only cases in wihishmight occur.



There are many risks, generally catastrophic rigksyhich the Pareto distribution fits
well, and for which the nosdbadditivity property could fail when using naoherent
risk measures. Examples of the Pareto distribulieimg fitted to operational and
catastrophic risks can be found in Guillénal. (2011) and Sarabiet al. (2009),
respectively.

A number of lessons can be drawn by those involmedsk management from the
preceding analysis. First, knowledge of the jotatistic behavior of risks is essential
when considering a company’s overall level of ri¥kis does not simply mean the
need to estimate the correlation coefficients g o consider underlying dependence
structures. Second, although usingceherent risk measure such as thEail
Value-at-Risk leads to higher capital estimations than in theecahen using the
Value-at-Risk measure, it serves to ensure that capital regeimésnare not
underestimated due to the property of subadditstityuld the hypothesis regarding the
joint behavior of sources of risk prove to be imeat. However, errors in the model
estimation could well lead to the real capital resleeling underestimated, even though a
coherent risk measure such asil Value-at-Risk has been used. Third, comonotonicity
does not represent the worst possible scenario whBmating capital requirements
using loss and risk measurements. This might appearterintuitive, but managers of
risks need to bear in mind that risks may well lpesadditive as opposed to
subadditive, and as such, no diversification effecturs when several random
variables are merged. Fourth, while it may appdariaus, differences in capital
estimation derived from the application of differeisk measures do not mean the
portfolio has varying degrees of risk; rather what see is simply different ways of
measuring what might happen beyond a given thrdsha@. the losses that would
exceed the threshold in the case of\thRie-at-Risk measure, and the severity of these
losses beyond the threshold in the castadfValue-at-Risk measure.

Appendix

A multivariate simulation of the random variablesa@onducted using the R-Project
software, version 2.13.1 and tleepula package implemented therein. Bellow we
describe the simulation performance.

A random variableX has a Generalized Pareto distribution (GPD) ifdigribution
function is

\ 1_exp<_7x):if€=o

where ¢ the shape parameter afid> 0 the scale parameter. The expexted value
E[X] is
B

ElX| =——
X =17
and the standard deviation is the scale paranfeter
The shape parameter can be estimated using maxitkalihood estimation or the

method of moments. Using the moments estimatiocquiore, the shape parameter



results inE[X] = 1%, >¢&= %+ 1=—CoVa[X]+1 ; being CoVal[X] the

coefficient of variation ofX.

Having estimated the sample expected value anstéimelard deviation for each line of
business considered we obtain the coefficient aitian and construct a 2x3 matrix
which containing the coefficients of variation asiindard deviation in each of the
rows. The columns represent each one of the thmeef business.

data<-read.table('CoV.csv', header=TRUE, sep=";")
data<-as.matrix(data)

The estimation of the shape and scale parameteosrias

shapel<- -data[1,1]+1 # the shape parameter for the first margin.
shape2<- -data[1,2]+1 # the shape parameter for the second margin.
shape3<- -data[1,3]+1 # the shape parameter for the third margin.
scalel<-data[2,1] # the scale parameter for the first margin.
scale2<-data[2,2] # the scale parameter for the second margin.
scale3<-data[2,3] # the scale parameter for the third margin.

The comonotonic bound are derived from the sumhefat— th quantiles of each
marginal distribution. We compute the quantilesdach margin after simulating one
thousand observations of the GPD for each margiergits corresponding parameters.

n=100000 # number of simulations.
I<-¢(0.80,0.90,0.99,0.999) # vector of given confidence level.

The simulation for the first, second and third niauaye

paretol<-rGPD(n,shapel, beta=scalel) # for the first margin.
pareto2<-rGPD(n,shape2, beta=scale2) # for the second margin.
pareto3<-rGPD(n,shape3, beta=scale3) # for the third margin.

VaR1<-quantile(paretol,l) # Value-at-Risk for the first margin.
VaR2<-quantile(pareto2,l) # Value-at-Risk for the second margin.
VaR3<-quantile(pareto3,l) # Value-at-Risk for the third margin.
VaR_com<-(VaR1+VaR2+VaR3) # comonotonic bound vector.

When considering independence between the randoiables, we obtaithe Value-
at-Risk and theTail Value-at-Risk by simulating the three-dimensional Gaussian
copula with Pareto margins given shape and scatanmers and dependence
parameters (linear correlations) for the copulaatétpzero.

corr<-¢(0,0,0) # vector of linear correlations for the Gaussiaputa.
copulagaussiana<-mvdc(normalCopula(corr,dim=3,
dispstr="un"),c(rep("GPD",3)),list(param1,param2,

param3))



gaussian.sample<-rmvdc(copulagaussiana,1000000)

# simulation of the copula.
gauss.sample.aggrega<-rowSums(gaussian.sample) # distribution of
total losses.

VaR_ind<-quantile(gauss.sample.aggrega,l)

TVaR_ind<-rep(0,4)

for(iin 1:4){

ES<-mean(gauss.sample.aggrega[gauss.sample.

aggrega>VaR_ind[i]])

TVaR_ind[i]<-ES}

VaR_ind # Value-at-Risk vector under independence assumption.
TVaR_ind # Tail Value-at-Risk vector under independence assumption.

The Tail Value-at-Risk under the comonotonicity assumption between random
variables is obtained by simply setting a new datien vector for the Gaussian
copula, i.ecorr<-c(0.9999,0.9999,0.9999) as the comonotonic copula can
be obtained when the dependence parameters ofathgs{an copula tend to one.

The Value-at-Risk and Tail Value-at-Risk for the Clayton and Frank copulas are
obtained in a similar way but changing the kincopula used and the corresponding
dependence parameter. We show the Clayton copséafoaa dependence parameter
0=1.

theta=1 # dependence parameter for the Clayton copula.
Copulaclayton<-mvdc(claytonCopula(theta,dim=3),
c(rep("GPD",3)),list(paraml,param2,parama3))
clayton.sample<-rmvdc(copulaclayton,1000000)
clayton.sample.aggrega<-rowSums(clayton.sample)
VaR_cl<-quantile(clayton.sample.aggrega,l)
TVaR_cl<-rep(0,4)

for(i in 1:4){
ES<-mean(clayton.sample.aggregalclayton.sample.
aggrega>VaR_cl[i]])

TVaR_cl[i]<-ES}

VaR_cl # Value-at-Risk vector under Clayton copula assumption.
TVaR_cl #Tail Value-at-Risk vector under Clayton copula assumption.
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